2002 CleanEnergy Seminar, Sacramento

Christoph Huss Importance of CleanEnergy for the Automobile Industry

BMW Group

[Source: based on Honda-Publication]

World Energy Demand Sustained Growth Scenario

Source: Shell AG

Climate Change – Greenhouse Effect

Reduction Targets for Greenhouse Gas Emissions

Rio Conference (UN Framework Convention on Climate Change)

• The ultimate objective.....is the stabilization of greenhouse gas concentrations...at a level that would prevent dangerous anthropogenic interference with the climate system.

Kyoto Protocol

- Reduction of CO₂ equivalent emissions at least 5% below 1990 levels in the period 2008 to 2012 (developed countries)
 - European Community 8%
 - Germany 21%

European Commission (interpretation of IPCC results)

- medium term: Reduction of worldwide CO₂ emissions by 20-40% by 2020
- long term: Reduction of worldwide CO₂ emissions by 70%

BMW (technological interpretation):

Evolution towards carbon free fuels → hydrogen

Possible Types of Fuels for Transportation Different Fuel Supply Chains Well-to-Tank

Well-to-Wheel CO₂ Emissions of ICE's

Comparison of Different Fuels

Long Term Potential of Hydrogen

Best of all Alternative Renewable Fuels

Source: Forschungsstelle für Energiewirtschaft, München

Liquid Hydrogen LH₂: Costs and CO₂ Emissions

Comparison of Production Options

Magna Steyr CleanEnergy PartnerForum 2001 23.11.2001 Seite 9

Different Hydrogen Propulsion Systems Common Infrastructure Requirements

Energy Density of H₂ Compared with Gasoline Tank System Volume for Passenger Cars

LH₂ (-250°C) versus CGH₂ (10 000 psi):

- + more cost-effective and approved in practical experience: LH₂-Transport by truck approx. half as expensive as power supply line
- + less space needed at filling stations: CGH2: Electrolyses on site, 12 000–16 000 psi required at filling station
- less efficient in production:
 energy losses for liquefaction approx. 2-4 higher than for compression to 10 000 psi

Hydrogen as a Fuel

Challenges and Barriers

- Renewable Energies:
 - Close the Gap!
 - ⇒ Mean price of oil over 30 \$/bbl
 - ⇒ More research for renewable energies!
- Costs of hydrogen production
 - Higher η, lower capital expenditures!
 - ⇒ high efficiency keeps cost of operation down (e.g. liquefaction with "green electricity")

LH_a from our bolt generabilite trough) • printing along 4s of prior • modest WITT-Efficiency (appr. 55

LH_from: Windpower

• gifner; energy Se of gitz.

• modes! Will-Pileboog (co. 65%)

Changest pilmen arany
knaset Will-Piltelany (appr. 405
knaset Will-Piltelany (appr. 405
knaset Will-Piltelany)
knaset Will-Piltelany
Life, from Natural Case
chapest patt for the

ther gendine
Gescline
Ngh WIT-effelorog (aggr. Sc

- ⇒ 175.000 Filling Stations in USA
- ⇒ Market Share "Branded" 55%
- ⇒ "Convenience"

Development of a H₂-Infrastructure

Current Projects at BMW

H₂-Production

⇒ Potential of Solar: "Dubai-Study" und "World Solar Study"

(FfE)

 \Rightarrow Wind-H₂: "Wind-Study H₂" (DEWI)

Collaboration with Windstream

⇒ Solar-Reforming of Gas: Collaboration with Solar Systems

(in negotiation)

Distribution and H₂ Filling Stations

- ⇒ Transport Energy Strategy to become a European Initiative
- ⇒ Clean Energy Partnership Berlin (CEP Berlin)
- ⇒ TES-EUCAR Initiative for a common European Fuels Roadmap
- ⇒ International Hydrogen Infrastructure Group (IHIG)

Hydrogen Service Station Network Hypothesis for Setting-up Phase

Number of filling stations

International Hydrogen Infrastructure Group – First results of "Customer Survey" Study

Customers exspectations to H ₂ infrastructure		
	urban areas	Interurban areas
known terrain	refueling "unpleasant"	No matter – route planning
unknown terrain	Choice of brand-name stations	"running-out-fear"

Basic infrastructure for H_2 : urban > 25% of all filling stations interurban > 50% of all filling stations

For comparison:

TES-Basic infrastructure assumption: 17% of all filling stations

CleanEnergy Hydrogen-Cycle

Production of hydrogen from unlimited renewable energy resources